
Key Terms

• file
• file pointer
• file extension
• I/O

Overview
Interacting with data stored on a computer’s disk is integral to many programs. Data
storage allows information to be used after the lifetime of a program without the
hassle of inputting it again. Data is stored on a disk in the form of files, collections of
data organized in such a way that the computer can understand. Files store a variety
of media, including audio, text, movies, pictures, and more.

Remember that all files are fundamentally just bits – 0s and 1s – that have been organized in a specific way. File
types (a “video file,” for instance) are merely abstractions of these bits. Likewise, file extensions, such as .txt, .c, or
.mp3, merely act as references for computer programs that tell them what they should expect to find inside the
file and what they should use the file for. So when a computer sees a certain extension, it knows that the corre-
sponding file (i.e., its 0s and 1s) is formatted in a specific way and should be opened with an appropriate program.

This is CS50.© 2018

Interacting With Files
The “I/O” in “file I/O” stands for input/output. Thus, file I/O refers to the process of retrieving information from
and storing information in files. In general, the file I/O process, broadly, consists of a few steps. First, you must
open the file, specifying the ways in which the file can be manipulated. After that, the file’s data is free to be ma-
nipulated in any of the specified ways. Finally, the file must be closed!

Diving Into Code
Files are interacted with in C via “file pointers,” i.e. references to
files, which in code are the FILE * data type. New file references
are usually initialized with the library function fopen, which takes
two arguments (both strings): the filename and the mode for
which the file should be opened.

There are many different ways to manipulate files. The most
important of these are reading (“r”), writing (“w”), and append-
ing (“a”), which is just like writing but done directly at the end of
the file. To write to a file, we can use fprintf, specifying the file
pointer to which we want to write and also what it is we want to
write. Other functions, like fgetc, let us read from a file, getting
characters, strings, and the like from the file pointer. Since there
are many methods for writing and reading various types of data,
we need to make sure to use the one which best suits our needs!

1 // Write to file
2 FILE *fp = fopen(“document.txt”, “w”);
3 fprintf(fp, “Hello, world!\n”);
4 fclose(fp);
5
6 // Read from file
7 fp = fopen(“document.txt”, “r”);
8 char c = fgetc(fp);
9 while (c != EOF)
10 {
11 printf(“%c”, c);
12 c = fgetc(fp);
13 }
14 fclose(fp);

Error Checking
It’s also very important to understand and check for po-
tential errors that might occur in the file I/O process. For
instance, unlike the previous example, we should always
make sure fopen was successful.

Take a look at the code at right and note the error check-
ing to ensure fopen was indeed successful. Here, the mode
specified was writing, or “w,” so failures could occur if the
file exists and it is corrupted. Had the mode been reading,
or “r” (as in line 7 of the former code), errors could have
resulted from trying to read from a nonexistent file. Also,
not having the appropriate permission to open a file (to read from or to write to) will also return an error.

1 // Write to file
2 FILE *fp = fopen(“document.txt”, “w”);
3 // ensure the file was successfully opened
4 if (fp == NULL)
5 {
6 fprintf(stderr, “Error opening file.\n”);
7 return 1;
8 }
9 // continue...

CS50 File I/O

