
CS50Structures and Encapsulation

Key Terms

• data structure
• struct
• member

Overview
At a certain point, the usual suspect data types no longer suffice for the kind of work
we need to do. Rather, we need to be able to encapsulate data more broadly, allowing
us to group related information together. For example, students have names (proba-
bly represented by strings), ages (probably represented by integers), and grade-point
averages (probably represented by floating-point numbers)--but none of those things
matter independently. Instead, all of these things come together and are part of some
larger overall entity: the student. Wouldn’t it be nice to be able to “bundle” these things
together, perhaps allowing us to abstract away some of the underlying specifics? In
more modern programming languages, we might do this with a so-called object, but in
C, we have a more basic mechanism for this: the data structure.

Arrays versus Structs

This is CS50.© 2018

Implementing Structs
In the lines of code above, we defined a new type called ‘student’. Similar to how int is a type, so too is student
a type – once we define it. We can now pass variables of type ‘student’ into functions or into other structs. To
create a new a new variable of type ‘student’, we need to write a line similar to what we would write if we need-
ed to declare a variable of type int: student s1 = {‘Zamyla’, 2014, 4.0}. Now, to access s1’s gpa, we can type
s1.gpa. To pass s1 to a function, let’s again look back at how we would do so with ints. For example, int foo(-
student x), is valid. Similarly, to pass in Zamyla’s student information, we can write foo(s1). And if the function
takes an argument of type int, we could simply pass in just the year member of s1 by using the line function(s1.
year).

 1 #define STUDENTS 3
 2 string names[STUDENTS];
 3 int classyears[STUDENTS];
 4 float gpas[STUDENTS];

 1 typedef struct
 2 {
 3 string name;
 4 int year;
 5 float gpa;
 6 }
 7 student;

Up until now, if we wanted to group data together, we were
limited to an array, each element in which needed to be of
the same type. Furthermore, we had to declare the size of
the array beforehand. To create a group of variables related
to students using arrays, each variable needs to be its own
array. And to increase or decrease the amount of students,
we need to change the #define STUDENTS line accordingly.
One advantage of this setup is that, so long as we know the
index associated with them, we can directly access every
student.

Another way to group data together is with a struct. Structs
allow us to make new data types out of existing ones. Here
we created a type student that has a string, an int, and a
float associated with it. We will refer to these as members.
In this way, we can refer to a specific member of the student
type via the line student.member, where “member” is the
name of whichever member we want to access. A tradeoff
of using structs is that we cannot iterate through each field
like we can in arrays. In C, arrays are static; so too are the

fields in structs. These attributes, such as a name or a year, must be defined. One of the main advantages of
storing data in a struct is that we can group data of different types together. Another benefit is that we don’t
have to declare how many ‘students’ there will be. Remember that in our earlier implementation of an array, we
had to include a #define line, but in structs, we can have as many students as we like without having to define
that number somewhere in our code.

