
Python for Web Programming

Key Terms

• server-side
scripting

• Flask
• web framework
• micro framework
• Jinja

Overview
In addition to using Python for writing local programs and algorithms, Python is of-
ten used for web programming. In web programming, Python is used for server-side
scripting. In other words, it’s used on the back end of a web application to implement
web servers. While Python is one of many languages used for back end web program-
ming, its readability, simplicity, and convenience all contribute to its popularity. In par-
ticular, Python has a built in HTTP server library called http.server that includes func-
tions for listening, managing, and responding to HTTP requests. Because Python has a
history of being used for web programming, many external web programming tools are
built using and compatible with Python, such as Django and Flask. Python also offers
easy integration with other tools and programming languages.

Flask
Flask is a micro web framework written in Python that provides programmers with tools to easily and quickly
implement web applications. A web framework is software that provides tools, libraries, and extra technologies
to build web applications, and a micro framework is a framework that is not highly dependent upon external
resources. Because of tools like Flask, it is unnecessary for web programmers today to build web servers from
scratch. Instead, by abstracting away lower level details, web programmers can focus on the logic of their specif-
ic web applications.

The code on the right shows the Python file of a simple web
application. In the first line, we import some functionality from
the Flask package. Then, we use Flask syntax create a new web
application, allowing Flask to set up some low level details.
Below that, we tell our applciation to go to the function index
when the “/” route is requested. Within index, we’ve called the
Flask function render_template to send the file index.html to
our user’s browser.

As you can see, building a web application with Flask is incredibly simple. In addition to this basic functional-
ity, Flask offers many other features that are useful for building web applications. To use these features, simply
check out Flask’s documentation.

This is CS50.© 2018

Jinja

CS50

Jinja is a template engine built into Flask. One of
its features is a templating language that allows
you to use dynamic elements (variables, loops,
conditions) in static HTML/CSS files. Jinja expres-
sions are very similar to Python expressions, mak-
ing Jinja even more convenient to use. Jinja also
enables inheritance of HTML/CSS files, minimizing
rewritten code.

In the code on the left, the file message.html is
using Jinja to inherit code from layout.html. Inheri-
tance of templates demonstrates better program-
ming design because it reduces repeated code,
maintains consistency, and makes templates more
convenient to update.

Like Flask, you can learn more about features of
Jinja by looking at the Jinja documentation.

from flask import Flask, render_template

app = Flask(__name__)

@app.route(“/”)
def index():
 return render_template(“index.html”)

 <!DOCTYPE html>

 <html>
 <head>
 <title>Hello</title>
 </head>
 <body>
 {% block body %}{% endblock %}
 </body>
 </html>

 {% extends “layout.html” %}

 {% block body %}
 Hello, world!
 {% endblock %}

layout.html

message.html

