ECSSO

Loops

Overview Key Terms
Loops are a way for a program to execute the same code multiple times. Instead of * loops
copying and pasting the same lines back-to-back, loops allow for code to be repeat- « for loop

ed. The resulting code is better designed: if you need to change the code that gets
repeated, you only need to change it once. C has multiple different types of loops: all
of which can accomplish the same things, though some may be preferable to others

depending on the circumstances.

coONOUVT DS WNPER

» while loop
* infinite loop
* do while loop

For Loops
for (int i = 0; 1 < 10; i++) The first type of loop in C is the for loop. Defining a for loop requires
{ three parts (included in parentheses after the word for, and separated
printf("hello!\n"); by semicolons), demonstrated at left (lines 1-4).
)
for (int j = @; j < 10; j++) The first part is the initialization: we create a variable i initially set to @.
{ This variable keeps track of which iteration the for loop is currently on.
printf("%i\n", j); Second is the condition: as long as the condition i < 10 is true, every-
} thing within the curly braces will keep running. As soon as the condi-

tion is false, then the loop ends. The third part is the loop modification:
this code is executed at the end of every loop. In this case, we modify our loop by increasing the value of i by 1.

Thus, each time the loop finishes, i will increase in value by 1. As soon as i is no longer less than 10, the condi-
tion fails and the loop will end. The end result is that "hello\n" is displayed 10 times.

By taking advantage of loop modification, you can also get a loop to do something slightly different each time
the loop iterates. In the second for loop example (lines 5-8 above), j is initially 8, and so @ is printed. Then j
increments to 1, and 1 is printed in the next loop iteration. This continues until j is no longer less than 10. The
result is that each number from @ to 9 is printed on its own line.

While Loops

C also includes a type of loop called a while loop. A while loop checks the

condition it is given: if it is true, it executes the code within the braces, and 2 lnF k = 8;
. : . . T 10| while (k < 10)

then checks the condition again. This process repeats until the condition is 11 {
false. The example at right (lines 9-14) does exactly the same thing as our . T .

. T 12 printf("%i\n", k);
second for loop (lines 5-8): printing out the numbers from @ to 9. 13 Kt :

14
If the while loop is given a condition that is always true (like the boolean } .
. . . . 15| while (true)
value true itself), then the loop will never stop running. The example at right 16| {
(lines 15-18) is an example of an infinite loop: since the condition will never . " "
) . . D . . 17 printf("hello!\n");

be false, the loop will continue running indefinitely. While loops are particular 18] }

useful when you don't know in advance how many times a loop should run.

Do-While Loops

The do-while loop is similar to a while loop in the sense that it
repeats a loop until a condition is false. However, a do-while loop,

19 Jint j; unlike a while loop, will always execute at least once, regardless

20 |do of the condition. This is often valuable in cases where user input

21 is required: the program should definitely ask for input once, and

22 j = get_int("Positive Number: "); 5y or may not need to ask for input more times if the input is

23 1} invalid.

24 |while (j <= 0);
In the example at left, the user will be prompted to enter an inte-
ger, and will be re-prompted continuously until a positive one is
provided.

© 2018 This is CS50.

