
Loops

Key Terms

• loops
• for loop
• while loop
• infinite loop
• do while loop

Overview
Loops are a way for a program to execute the same code multiple times. Instead of
copying and pasting the same lines back-to-back, loops allow for code to be repeat-
ed. The resulting code is better designed: if you need to change the code that gets
repeated, you only need to change it once. C has multiple different types of loops: all
of which can accomplish the same things, though some may be preferable to others
depending on the circumstances.

For Loops
The first type of loop in C is the for loop. Defining a for loop requires
three parts (included in parentheses after the word for, and separated
by semicolons), demonstrated at left (lines 1-4).

The first part is the initialization: we create a variable i initially set to 0.
This variable keeps track of which iteration the for loop is currently on.
Second is the condition: as long as the condition i < 10 is true, every-
thing within the curly braces will keep running. As soon as the condi-
tion is false, then the loop ends. The third part is the loop modification:

this code is executed at the end of every loop. In this case, we modify our loop by increasing the value of i by 1.

Thus, each time the loop finishes, i will increase in value by 1. As soon as i is no longer less than 10, the condi-
tion fails and the loop will end. The end result is that "hello\n" is displayed 10 times.

By taking advantage of loop modification, you can also get a loop to do something slightly different each time
the loop iterates. In the second for loop example (lines 5-8 above), j is initially 0, and so 0 is printed. Then j
increments to 1, and 1 is printed in the next loop iteration. This continues until j is no longer less than 10. The
result is that each number from 0 to 9 is printed on its own line.

This is CS50.© 2018

While Loops
C also includes a type of loop called a while loop. A while loop checks the
condition it is given: if it is true, it executes the code within the braces, and
then checks the condition again. This process repeats until the condition is
false. The example at right (lines 9-14) does exactly the same thing as our
second for loop (lines 5-8): printing out the numbers from 0 to 9.

If the while loop is given a condition that is always true (like the boolean
value true itself), then the loop will never stop running. The example at right
(lines 15-18) is an example of an infinite loop: since the condition will never
be false, the loop will continue running indefinitely. While loops are particular
useful when you don't know in advance how many times a loop should run.

Do-While Loops
The do-while loop is similar to a while loop in the sense that it
repeats a loop until a condition is false. However, a do-while loop,
unlike a while loop, will always execute at least once, regardless
of the condition. This is often valuable in cases where user input
is required: the program should definitely ask for input once, and
may or may not need to ask for input more times if the input is
invalid.

In the example at left, the user will be prompted to enter an inte-
ger, and will be re-prompted continuously until a positive one is
provided.

1 for (int i = 0; i < 10; i++)
2 {
3 printf("hello!\n");
4 }
5 for (int j = 0; j < 10; j++)
6 {
7 printf("%i\n", j);
8 }

 9 int k = 0;
10 while (k < 10)
11 {
12 printf("%i\n", k);
13 k++;
14 }
15 while (true)
16 {
17 printf("hello!\n");
18 }

19 int j;
20 do
21 {
22 j = get_int("Positive Number: ");
23 }
24 while (j <= 0);

CS50

