
Bubble Sort

Key Terms

• bubble sort
• array
• pseudocode

Overview
There are limited ways to search a list that is unsorted. It is often more efficient to sort
a list and then search it. One of the most basic sorting algorithms is called bubble sort.
This algorithm gets its name from the way values eventually “bubble” up to their prop-
er position in the sorted array. This basic approach to sorting narrows the scope of our
problem to focusing on ordering just two elements at a time, instead of an entire array
at a time. This approach is very straightforward, but possibly at the expense of making
an inordinate number of swaps just to put one single element into position.

Implementation
Bubble sort works by comparing two adjacent numbers in
a list, and swapping them if they are out of order. Looking
at the example on the left, if we are given an array of the
numbers 5, 1, 6, 2, 4, and 3 and we wanted to sort it using
bubble sort our pseudocode for one single pass might look
something like this:

for every element in the array
 check if element to the right is smaller
 if so swap the two elements
 else move on to the next element in the list

When this is implemented on the example array, the pro-
gram would start at 5 and compare it with 1. Since 1 is
smaller than 5 it would swap them. It would then move on
to compare 5 and 6 since those are in the correct order, we
just move on to the next element. Next 6 and 2 are com-
pared, and so on.

Finally after doing this for all the elements in the array we
are left with the array 1, 5, 2, 4, 3, and 6. It’s not completely
sorted, but notice that after the first passthrough, the 6 is
already in its correct location. After n passthroughs the last
n elements are in their correct position. This fact can be
used to optimize this algorithm since it is not necessary to
look at those correctly sorted elements. It is this effect of
the larger elements “bubbling” to the right side that gives
this algorithm its name!

This is CS50.© 2018

Sorted Arrays
If bubble sort was implemented only as above, we would only go through one passthrough, but as the example
shows, it is not guaranteed that the array will be sorted after one pass. So how many times should this algorithm
be run? Well in the worst case scenario, a reverse sorted list (6, 5, 4, 3, 2, 1), it might need to run 5 times. Indeed
the same would hold true for n elements, the algorithm might need to run n-1 times. That seems wasteful though,
since it would only need to run that maximum number of times if the array is a “worst case scenario” (more on
that in the time complexity module).

How can you ensure you only run this algorithm the necessary amount of times, maybe saving a few steps? Well,
if this algorithm is run and no swaps are made, it must be true that the array is sorted (think about it)! Maybe
then it would make sense to amend our implementation to include a counter for the amount of swaps made. If
counter == 0, then the array is sorted, however if counter > 0, then more passthroughs are needed to sort the
array. Now we only decide at the end of every passthrough whether more passthroughs are necessary!

CS50

61 42 35

65 42 31

25 46 31

Step-by-step process of 1 pass
through in bubble sort

25 64 31

25 34 61

65 42 31

